Toward Statistical Machine Translation without Parallel Corpora

نویسندگان

  • Alexandre Klementiev
  • Ann Irvine
  • Chris Callison-Burch
  • David Yarowsky
چکیده

We estimate the parameters of a phrasebased statistical machine translation system from monolingual corpora instead of a bilingual parallel corpus. We extend existing research on bilingual lexicon induction to estimate both lexical and phrasal translation probabilities for MT-scale phrasetables. We propose a novel algorithm to estimate reordering probabilities from monolingual data. We report translation results for an end-to-end translation system using these monolingual features alone. Our method only requires monolingual corpora in source and target languages, a small bilingual dictionary, and a small bitext for tuning feature weights. In this paper, we examine an idealization where a phrase-table is given. We examine the degradation in translation performance when bilingually estimated translation probabilities are removed and show that 80%+ of the loss can be recovered with monolingually estimated features alone. We further show that our monolingual features add 1.5 BLEU points when combined with standard bilingually estimated phrase table features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

استخراج پیکره‌ موازی از اسناد قابل‌مقایسه برای بهبود کیفیت ترجمه در سیستم‌های ترجمه ماشینی

Data used for training statistical machine translation method are usually prepared from three resources: parallel, non-parallel and comparable text corpora. Parallel corpora are an ideal resource for translation but due to lack of these kinds of texts, non-parallel and comparable corpora are used either for parallel text extraction. Most of existing methods for exploiting comparable corpora loo...

متن کامل

Improving Statistical Machine Translation Performance by Training Data Selection and Optimization

Parallel corpus is an indispensable resource for translation model training in statistical machine translation (SMT). Instead of collecting more and more parallel training corpora, this paper aims to improve SMT performance by exploiting full potential of the existing parallel corpora. Two kinds of methods are proposed: offline data optimization and online model optimization. The offline method...

متن کامل

Training Data in Statistical Machine Translation - the More, the Better?

Current statistical machine translation (SMT) systems are stated to be dependent on the availability of a very large training data for producing the language and translation models. Unfortunately, large parallel corpora are available for a limited set of language pairs and for an even more limited set of domains. In this paper we investigate the behavior of an SMT system exposed to training dat...

متن کامل

End-to-end statistical machine translation with zero or small parallel texts

We use bilingual lexicon induction techniques, which learn translations from monolingual texts in two languages, to build an end-to-end statistical machine translation (SMT) system without the use of any bilingual sentence-aligned parallel corpora. We present detailed analysis of the accuracy of bilingual lexicon induction, and show how a discriminative model can be used to combine various sign...

متن کامل

Using Noisy Bilingual Data for Statistical Machine Translation

SMT systems rely on sufficient amount of parallel corpora to train the translation model. This paper investigates possibilities to use word-to-word and phrase-to-phrase translations extracted not only from clean parallel corpora but also from noisy comparable corpora. Translation results for a Chinese to English translation task are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012